
Athens University of Economics and Business

MSc in Data Science

Data Mining Techniques – Assignment 1

Deadline: 11/3/2018

Group assignment (groups of up to 2 people).

The assignment corresponds to 20% of the total grade of the course.

Discussions between groups are recommended, but collaborating on the actual
solutions is considered cheating and will be reported.

There will be no extension of the assignment deadline

Professor: Y.Kotidis (kotidis@aueb.gr)

Assistant: I.Filippidou(filippidoui@aueb.gr)

Assignment 1: Recommending friends

When you sign into Facebook, it suggests friends. In this assignment, you will write a
program that reads Facebook data and makes friend recommendations. In order to
create your recommendation engine you will use topology based methods proposed
in the literature. Details on the steps that this assignment requires are provided
below.

1) Dataset

For this assignment you will need to handle graph datasets and more specifically

social network graphs. You need to download the ego-Facebook dataset using the

link below:

https://snap.stanford.edu/data/egonets-Facebook.html

The dataset consists of 'circles' (or “friends” lists') from Facebook. Facebook data
was collected from survey participants using this Facebook app. The dataset includes
node features (profiles), circles, and ego networks. This dataset consists of 4039
nodes (users) and 88234 edges (friendships between users). The graph is connected
and directed (each edge counts as friendship for both nodes). For this assignment
you need to transform the graph to undirected by adding the missing edges (e.g. for
an edge from node1 to node2 you need to add an edge from node2 to node1 in the
file). Also keep the node ids from the file (notice id count starts from 0). From the
available files you will need to download only facebook_combined.txt.gz , which

mailto:kotidis@aueb.gr
mailto:filippidoui@aueb.gr
https://snap.stanford.edu/data/egonets-Facebook.html
https://snap.stanford.edu/data/egonets-Facebook.html
https://www.facebook.com/apps/application.php?id=201704403232744
https://snap.stanford.edu/data/facebook_combined.txt.gz

combines all the necessary information (nodes and connections) for this assignment.
In this file each line contains one edge (friendship) between two user ids.

Before working with the Facebook dataset, and in order to be able to test your code
manually you can create your own sample graph. It is always a good idea to test your
code on a dataset that is small enough for you to manually compute the results. For
this reason create a small graph (8-10 nodes) and add edges as you wish in order to
form a connected graph. Then manually compute the results and compare it to your
program output each time you wish to test your code.

2) Recommending friends using Common neighbors (friend-of-friend (FoF) method)

For this assignment you need to implement a recommendation system using the

common neighbors’ method. This method derives from the fact that if two users in

the social network share many common friends, they may have a great chance to

become friends in the future. This algorithm is also referred to as “Common-

Neighbors”. In this method, if non-friend Y is your friend's friend, then maybe Y

should be your friend too. If person Y is the friend of many of your friends, then Y is

an even better recommendation. The best friend recommendation is the person

with whom you have the largest number of mutual friends. In order to score each of

the friendship suggestions between two nodes that are not already connected, for

your algorithm you will use the score function below:

Where NA denotes the neighbors of node A.

For the assignment you need to print a list containing the first 10 friend

recommendations and their corresponding score, as determined by the FoF method

for the following nodes:

nodeID: 107 (high degree node)

nodeID: 1126

nodeID: 14

nodeID: 35

If there are fewer than 10 recommendations, print all the recommendations.

In the case of ties in friendship score you should output the node with the smallest

nodeID (based on the ids given from the dataset).

3) Recommending friends using Jaccard coefficient

A seocnd approach that you need to implement for this assignment is to recommend

friends based on the jaccard coefficient. The jaccard coefficient is a metric used to

evaluate similarities. The Jaccard coefficient measures the similarity between sample

sets and is defined as the size of the intersection divided by the size of the union. In

order to score each of the friendship suggestions between two nodes that are not

already connected, for your algorithm you will use the score function below:

Again for the jaccard coefficient scoring function you need to print a list containing

the first 10 friend recommendations and their corresponding score, for nodes:

nodeID: 107 (high degree node)

nodeID: 1126

nodeID: 14

nodeID: 35

If there are fewer than 10 recommendations, print all the recommendations.

In the case of ties in friendship score you should output the node with the smallest

nodeID (based on the ids given from the dataset).

4) Recommending friends using Adamic and Adar function

Adamic and Adar proposed a weighted function for scoring similarity between users

(nodes) in a network. The more similar a user is to another, the more likely a

friendship will occur in the network. In order to score each of the friendship

suggestions between two nodes Adamic and Adar suggested the following weighted

scoring function:

This scoring function evaluates the likelihood that user A is linked to user B, by

summing the number of neighbors the two users have in common. Items that are

unique to a few users are weighted more than commonly occurring items. The

weighting scheme uses the inverse log frequency of their occurrence.

Again, for the Adamic and Adar scoring function you need to print a list containing

the first 10 friend recommendations and their corresponding score, for nodes:

nodeID: 107 (high degree node)

nodeID: 1126

nodeID: 14

nodeID: 35

If there are fewer than 10 recommendations, print all the recommendations.

In the case of ties in friendship score you should output the node with the smallest

nodeID (based on the ids given from the dataset).

5) Evaluation of the recommendation system

In order to evaluate your friendship recommendation system for each scoring

function you will first need to examine if the scoring functions give different

recommendations for specific users. Considering only those 40 Facebook users with

an id that is a multiple of 100, compute and print the number of Facebook users who

have the same first 10 friend recommendations under each scoring function, and the

number of Facebook users who have different first 10 friend recommendations

under the each scoring function. Also for every pair of functions (FoF-jaccard,

Jaccard-Adamic, FoF-Adamic) compute the similarity percentage of the

recommended friend lists for the 40 users as well as the average similarity between

the algorithms.

Then in order to evaluate which scoring function recommends the best links, you

need to implement the following algorithm:

1. Randomly choose a real friend connection; call the two friends F1 and F2.
2. Remove their friendship from the graph.
3. Compute friend recommendations for F1 and F2 (10 recommendations).
4. Determine the rank of F1 in F2's list of recommended friends.

Determine the rank of F2 in F1's list of recommended friends.
If either of these does not exist (e.g., F1 is not recommended as one of F2's
friends), discard the F1-F2 pair from your experiment.
Otherwise, average these two numbers for each similarity function.
The "rank" is also known as the "index" or "position".

5. Don't forget to put their friendship back in the graph.

For each scoring function, perform the above experiment 100 times

Compute the average rank of the correct recommendation within the list of
recommendations. (If the correct recommendation does not appear within the list of
recommendations, ignore that trial when computing the average rank.)

To prevent different random choices from skewing your results, use the same
random choices for all similarity functions. Another way of saying this is that each
time you make a random choice, you should evaluate all three recommendation
systems using that choice. Then go on to the next choice. Every run of your program
will produce slightly different average ranks, but your program should be consistent
in terms of which method is better.

For better evaluation of each scoring function you should compare the results with a
random recommendation system as a baseline. You should implement a simple
random recommender (that randomly chooses friend recommendations for the
users) and for each scoring function compare the results with it.

5) Assignment Bonus

In order to gain a 10% grade bonus for this assignment you can implement any

different evaluation function you wish and present the results (your results should

be evaluated in the same way as for the three above scoring functions). You can

choose any topology based method described in the literature or create your own.

Moreover you can gain another 10% grade bonus, if your scoring function have

better results than the three functions required for this assignment.

Assignment handout:

1) A pdf file describing in detail:

a. Any processing and conversion was made to the original data and the

reasons it was necessary. Specifically, you should indicate the process

you used in order to transform the graph to undirected.

b. The techniques you used in order to implement the three scoring

functions and the evaluation method required for this assignment.

Moreover for each scoring function you need to present the first 10

friend recommendations and their corresponding score, as

determined in the description of each algorithm.

c. For the evaluation of your results, first you have to present if the

scoring functions give different recommendations for specific users

and compute the similarity percentage as well as the average

similarity between the algorithms. Then using the evaluation method

described above, you should evaluate which scoring function

recommends the best links. Present the tests you have done and

justify your conclusions. The presentation should contain charts with

comparative measurements and comment on these results.

2) The program/script you implemented for your recommendation system.

Implementation can be done in any programming language and should be

accompanied by the necessary comments and remarks.

3) The pdf with the presentation of your work as well as the required

programs/scripts should be uploaded to e-class until the assignment

deadline.

